x^2-4x=32/3-2x-x^2

Simple and best practice solution for x^2-4x=32/3-2x-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-4x=32/3-2x-x^2 equation:



x^2-4x=32/3-2x-x^2
We move all terms to the left:
x^2-4x-(32/3-2x-x^2)=0
Domain of the equation: 3-2x-x^2)!=0
We move all terms containing x to the left, all other terms to the right
-x^2)-2x!=-3
x∈R
We get rid of parentheses
x^2+x^2+2x-4x-32/3=0
We multiply all the terms by the denominator
x^2*3+x^2*3+2x*3-4x*3-32=0
Wy multiply elements
3x^2+3x^2+6x-12x-32=0
We add all the numbers together, and all the variables
6x^2-6x-32=0
a = 6; b = -6; c = -32;
Δ = b2-4ac
Δ = -62-4·6·(-32)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{201}}{2*6}=\frac{6-2\sqrt{201}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{201}}{2*6}=\frac{6+2\sqrt{201}}{12} $

See similar equations:

| 11-2x=41 | | n−1.4=−6.3n−1.4=−6.3 | | 9x/11=74 | | 2(x+5)=3(6-x) | | 3(5p−3)=5(p−1) | | 3x2+12=0 | | 9x÷11=74 | | 3m+4=6m-8 | | x+2/18=8/9+x-6/4 | | 5,5x-64=3,5+14 | | 2(2x+3)=8x+5-4x+1 | | 25=u/4-14 | | 11x*X=144 | | 13x+4=5x+28 | | 3x2=-12 | | (t-9)^6-13(t-9)^3+42=0 | | 4=−0.8n | | x+2(4+x)=3x+8 | | (-2/5)-1/2y=13/5 | | 3x+2=(x=5) | | 12x^2-12x-45=0 | | 12a+2=3a-7 | | 3.2=−0.4n | | 3(x-1)=4-(x-3) | | 12.6=1.2b+3 | | 24-13x=11 | | X^2+8x-6=-6 | | (50-3x)x=112 | | 5(x-6)-6(x-5)=x+6-(x-3) | | 3(2w-2)=2(w+3) | | (m+5)(m-5)=0 | | 7x+8-2x=x-16 |

Equations solver categories